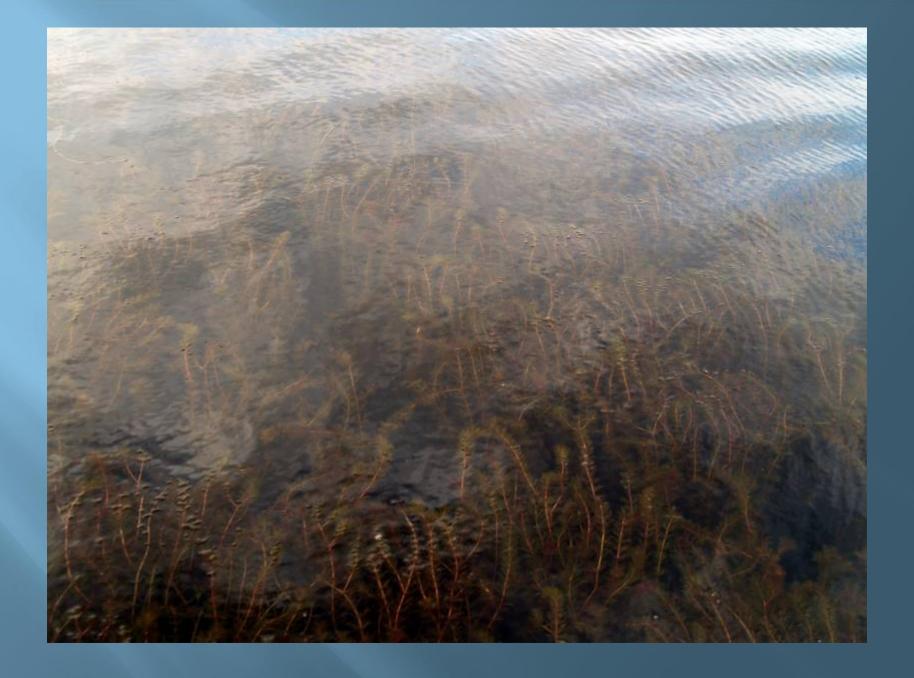


### Invasive or Exotic Species:


By definition, an "exotic" species is one which is not native to a particular geographic area. Many of the exotic species present in our waterways originated from the Caspian Sea and are of Eurasian origin, largely a result of increased global shipping commerce and economic progress.

### Eurasian Watermilfoil (Myriophyllum spicatum)

- Early season canopyforming growth
- Exotic submersed macrophyte from Eurasia
- Shades light from native macrophytes
- Creates a high BOD, depletes oxygen
- Must be controlled with herbicides or biological control









# Hybrid Watermilfoil (M. spicatum var. sibiricum)



Photo courtesy of Blair Wickman

- Characteristics of a native species of Watermilfoil (usually *M. sibiricum*, or *M. heterophyllum*) **and** Eurasian Watermilfoil)
- Generally thicker stems, hardy, stems often appear pink or buff-off white
- Unpredictable response to management control methods

### Curly-Leaf Pondweed (Potamogeton crispus)

- Invasive, exotic
- Early to germinate; dies back in mid-summer usually!
- Forms highly viable and resistant turions
- May grow in monotypic stands, prefers disturbed habitats
- Managed through mechanical harvesting and/or use of systemic herbicides



# Blue Green Algal Blooms

- Often present in hyper-eutrophic systems
- Indicators of "internal loading" of phosphorus
- May contain toxins which can be fatal to animals and humans

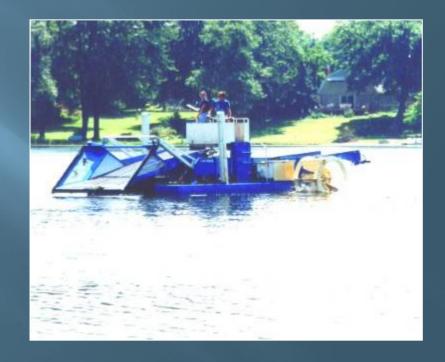
Spring Lake, Ottawa Co, MI (July, 2009)





# Aquatic Plant Management Techniques




## Chemical Herbicides & Algaecides

- Applied to both exotic and native aquatic plants
- Most commonly used: 2,4-D,
   Reward, Triclopyr, Fluridone,
   Aquathol-K, CuSO<sub>4</sub>, Glyphosate
- Requires MDEQ permit; residue sampling may be required (i.e. Triclopyr, Fluridone)
- Shallow well restrictions, swimming restrictions, watering restrictions-Notifications required



## Mechanical Harvesting

- Removes nuisance aquatic vegetation to reduce organic matter accumulation
- Requires a dump site for plant debris
- No permit required by the MDEQ but sometimes required for use of MDNR launch site
- NOT recommended for EXOTIC species that fragment!!



# The EWM Weevil (Enhrychiopsis lecontei)

- Discovered for EWM control by S. Sheldon in 1995
- Larvae and pupae de-vascularize EWM stem tissue
- Adults over-winter in shoreline riparian vegetation
- Adults appear to be eaten by fish in lakes of low macroinvertebrate biodiversity
- Not effective in controlling rapid spread of EWM; variable results in many lakes nationwide



Weevil from Bear Lake Bluegill fish

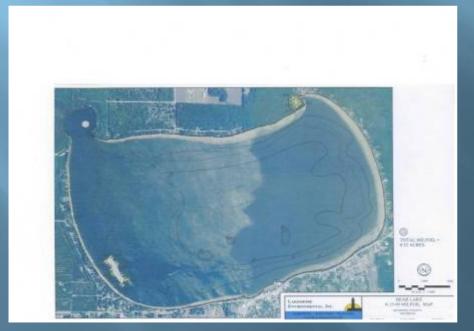
Pupae in EWM Stem



# Bear Lake (Manistee County, MI): A Case Study for Selective Aquatic Herbicide Control

- Approximately 320 acres of EWM treated with systemic aquatic herbicides such as 2,4-D in main lake during mid-June and early July of 2009 and Triclopyr in west & east bays and near the village.
- EWM acreage was at 11.0 acres in bays and main lake during 2009; Treated w/same herbicides as in 2008.
- Current EWM acreage is 0!!
- Lake is currently on a watershed management program and is undergoing re-evaluation of longterm strategies for BMP's to reduce nutrient loads.




### The GPS Point-Intercept Grid Survey Method

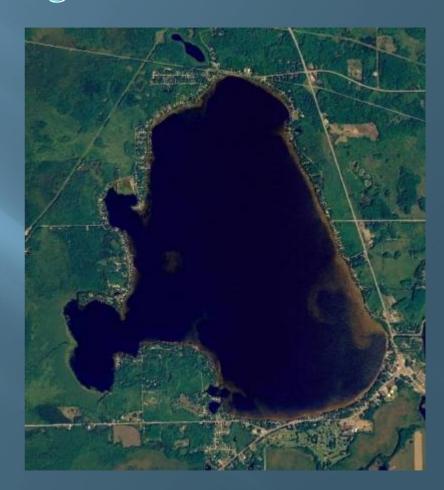






EWM Distribution, July 2008



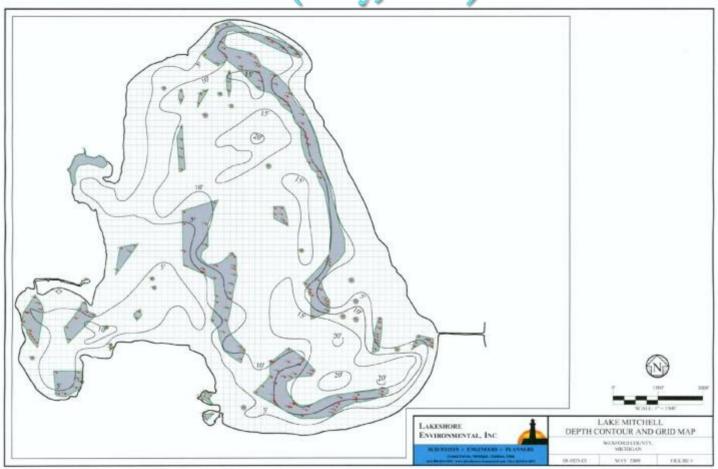

EWM Distribution, July 2009

# EWM Management Options Considered

- Mechanical Harvesting Causes fragmentation of EWM stems, not feasible
- Biological Control Was considered for long-term control, yet not reliable for resisting "spread", preferred use as Integrated Management Option
- Chemical Herbicides Contacts such as Reward offer only temporary control; do not kill entire plant. Systemics such as Triclopyr are highly expensive, not ideal for large, open waters. Systemics such as 2,4-D very effective and allow for localized treatments.
- No Action Would have likely necessitated a whole-lake treatment (SONAR).

# Lake Mitchell: A Case Study for Integrated Management

- Approximately 365 acres of EWM treated with systemic aquatic herbicides such as 2,4-D & Triclopyr during early June of 2009
- EWM estimated at 55 acres in fall of 2009
- Nuisance un-navigable areas were mechanically harvested in late June/early July (39 acres)
- 10,000 weevil units were placed adjacent to the wetlands in Big Cove to feed on viable EWM.
- Lake is currently on a watershed management program and is undergoing re-evaluation of long-term strategies for BMP's to reduce nutrient loads.




# The GPS Point-Intercept Aquatic Vegetation Survey Method



- U.S. Army Corps of Engineers Method for whole-lake aquatic vegetation surveys of all aquatic plant forms
- Non-biased; amenable to statistical analysis
- Useful for aquatic plant management plans
- Easily conducted for future surveys; allows for seasonal and yearly comparisons among all data points

# Lake Mitchell EWM Distribution (May, 2009)

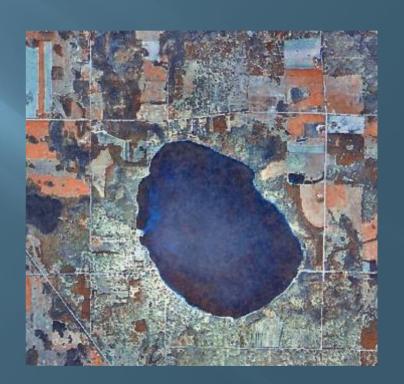


A DESCRIPTION OF PERSONS ASSESSMENT OF THE PERSON OF THE P

# Spot-Treatment of 2,4-D for EWM Control



# Weevil Stocking in Big Cove




# Harvesting in Coves, Var. Regions



# Round Lake (Mason County, MI): A Case Study for Selective Aquatic Herbicide Control, Whole-lake Fluridone Treatment, Mechanical Harvesting, & Biological Control

- > 270 acres of EWM canopied in lake in September, 2006
- In 2007, ~ 120 acres harvested and 5,000 weevils placed in protected areas for evaluation/fisheries study
- Lake mean depth < 6.0 feet
- Whole-lake fluridone treatment occurred in May of 2008 partially successful
- Selective treatment of EWM with 2,4-D occurred in June of 2009 very successful with only < 5.0 acres remaining
- Native aquatic plant communities rebounding well and fishery has improved dramatically





Round Lake, September, 2006





Round Lake, July 2007



Ideal conditions for weevils; LRBOI conducted fishery study/showed evidence of mild predation by bluegills due to lack of food

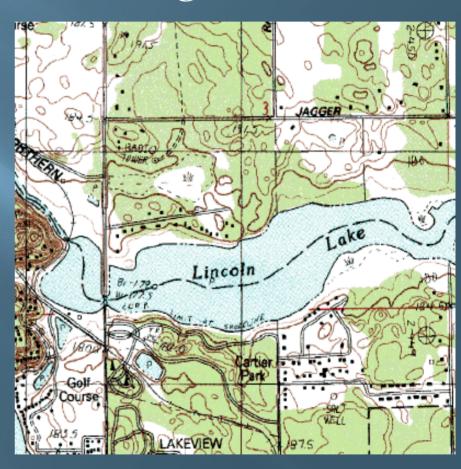






SONAR (fluridone treatment applied to entire lake volume; bump treatment not permitted due to high concentrations




Round Lake, September 2009



Round Lake now, with < 5.0 acres of EWM and balanced plant biodiversity

# Lincoln Lake (Mason County, MI): A Case Study for Selective Aquatic Herbicide Control & Mechanical Harvesting

- Approximately 30 acres of EWM treated with systemic aquatic herbicides such as 2,4-D in main lake during mid-June of 2008 and 2009.
- Approximately 70 acres of nuisance native aquatic plant growth harvested in 2008 and 56 acres in 2009.
- Lake has low base flow and very high nutrient concentrations.
- Lake is currently on a watershed management program and is undergoing re-evaluation of long-term strategies for BMP's to reduce nutrient loads.







# October 2006 (Pre-Management)

#### The Problems:

Dense EWM, Curly-leaf Pondweed, Coontail, Water Stargrass, Elodea, Lilypads, and Pondweeds; Shallow depths

#### The Challenges:

Avoiding Wild Rice areas; Silt/sedimentation interferes w/management activities; Protecting fishery spawning areas



August, 2009 (Before Harvest)

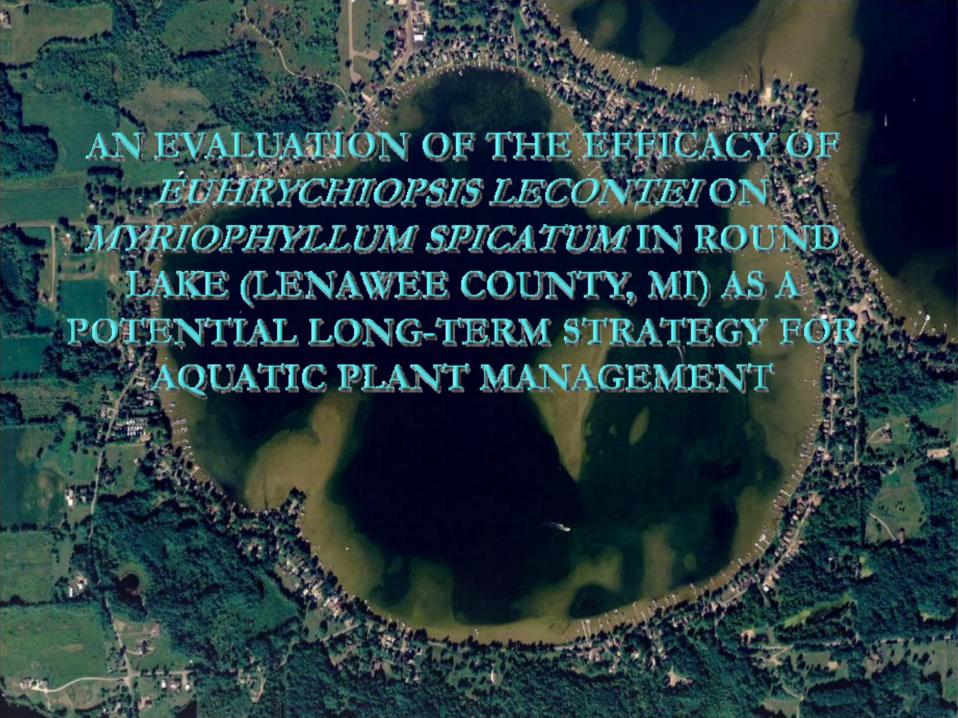


August, 2009 (After Harvest)



August, 2009 (Before Harvest)




August, 2009 (After Harvest)



August, 2009 (Before Harvest)



August, 2009 (After Harvest)



### Round Lake Weevil Experimental Sites

- 2 control and 2 treatment sites (independent sites, approx 1,000 ft apart)
- Test plot areas 625 ft<sup>2</sup> (58.06 m<sup>-2</sup>) in size; marked with GPS
- Weevil stocking density of ~157 weevils m<sup>-2</sup> in treatment sites- Newman Research
- No weevils stocked in Control sites
- Depth of experimental sites approximately 8-10 feet





### Round Lake Field Evaluation Methods





- 60 milfoil stems collected pre-treatment and post-treatment [weevil] for each of the 4 sites (BACI statistical design)
- Stems collected by skin divers from above sediment interface
- 0.25 m<sup>-2</sup> quadrat samples collected among all sites to estimate stem density of EWM
- Transect data of native species collected at sites

# Round Lake Weevil Experimental Sites



### Round Lake Laboratory Experimental Methods



- EWM stems carefully separated by species (i.e. hybrid vs. pure strain) and analyzed for stem parameters for all pre-treatment and post-treatment sites
- Each individual stem carefully inspected w/ Microscopy for all weevil life stages and data recorded

# Milfoil Stem Parameters Measured at Experimental Sites

- Index of EWM stem damage (0-5 scale);
   Dissection microscope
- EWM stem Compressional diameter (mm);
   Calibrated digital calipers
- Number of EWM lateral branches
- EWM stem length (cm); Meter stick
- Degree of weevil damage spread from transplant sites; Native plant species present
- EWM Stem density
- Degree of Hybridization



### Index of Stem Damage

- 0 = Absence of weevil damage
- 1 = Presence of necrosis on stem; no leaf defoliation
- 2 = Presence of larvae in stem; no leaf defoliation
- 3 = Presence of larvae in stem and/or stem vascular tissue degradation and some leaf defoliation
- 4 = Presence of larvae in stem and/or severe degradation of stem vascular tissue, and moderate leaf defoliation
- 5 = Severely damaged stem tissue and complete leaf defoliation

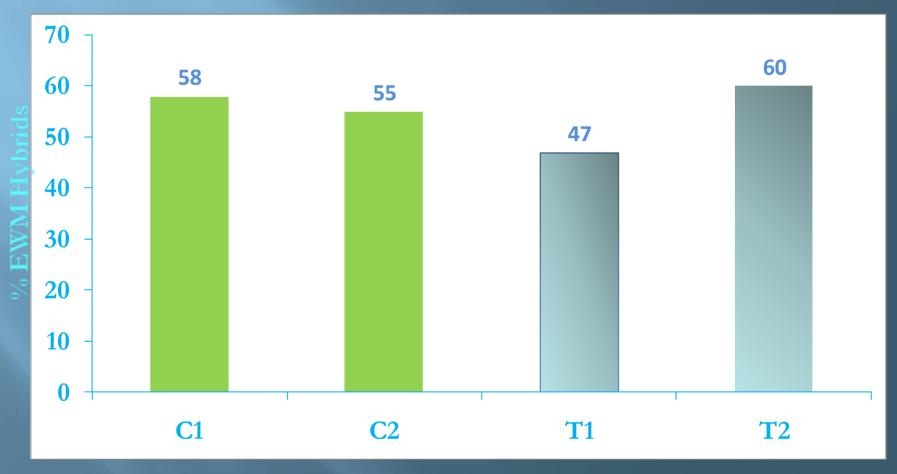


Photograph courtesy of Dr. Ray Newman, University of Minnesota, Used with permission.

### Round Lake Pre-Weevil

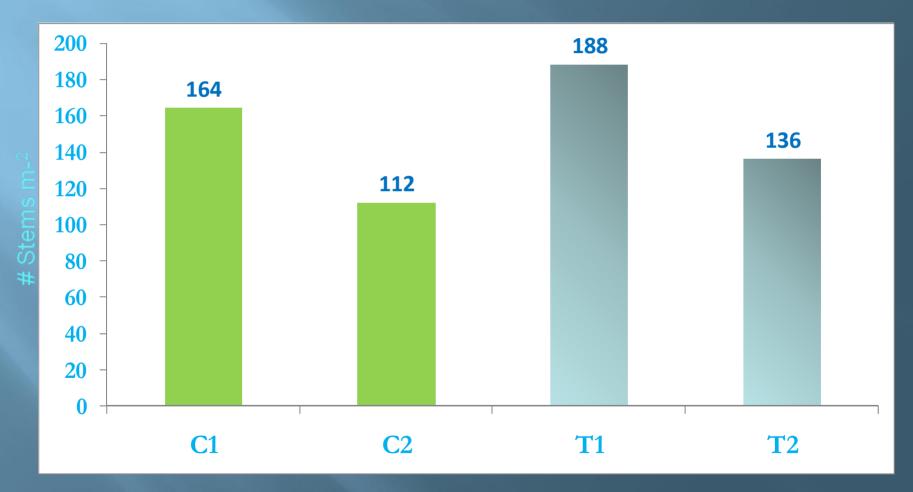
### Round Lake Post-Weevil

| Site       | Mean Index<br>of Stem<br>Damage<br>(0-5) | Mean Stem Diameter (mm) |
|------------|------------------------------------------|-------------------------|
| <b>C</b> 1 | Good                                     | 1.59 ± 0.27             |
| <b>C</b> 2 | Good                                     | 1.59 ± 0.21             |
| T1         | Excellent                                | 1.68 ± 0.25             |
| <b>T</b> 2 | Good                                     | 1.70 ± 0.29             |


| Site       | Mean Index of Stem Damage (0-5) | Mean Stem Diameter (mm) |
|------------|---------------------------------|-------------------------|
| <b>C</b> 1 | 0.3                             | 1.95 ± 0.47             |
| C2         | 0.2                             | 1.94 ± 0.44             |
| T1         | 2.4*                            | $1.84 \pm 0.45$         |
| Т2         | 1.3*                            | 1.70 ± 0.43             |

### Round Lake Pre-Weevil

### Round Lake Post-Weevil

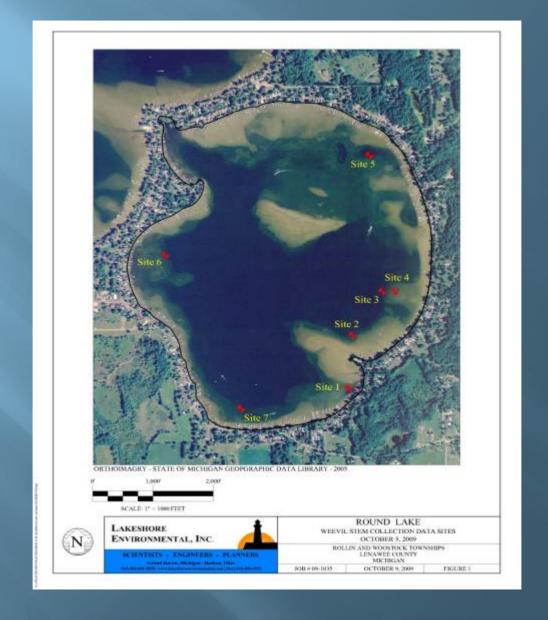

| Site       | Mean # Lateral Stem Branches | Mean Stem<br>Length (cm) | Site       | Mean # Lateral Stem Branches | Mean Stem<br>Length (cm) |
|------------|------------------------------|--------------------------|------------|------------------------------|--------------------------|
| <b>C</b> 1 | 1.3                          | 187.3 ± 53.8             | <b>C</b> 1 | 2.1                          | 140.3 ± 17.7             |
| <b>C</b> 2 | 1.5                          | 160.0 ± 35.6             | C2         | 2.1                          | 147.7 ± 17.4             |
| T1         | 1.6                          | 223.0 ± 49.3             | T1         | 2.3                          | 140.3 ± 16.22*           |
| <b>T2</b>  | 2.3                          | 177.6 ± 30.3             | <b>T2</b>  | 2.0                          | 139.1 ± 17.8**           |

# Percentage of EWM Hybrids among Evaluation Sites



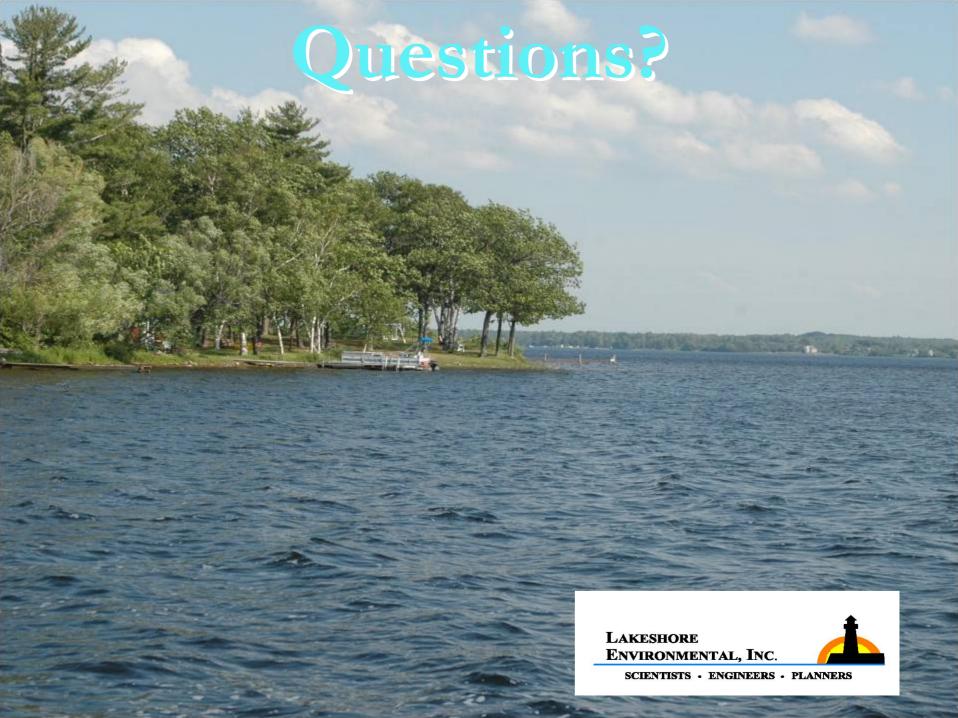
**Evaluation Site** 

### Evaluation Site EWM Stem Densities




**Evaluation Site** 

#### Round Lake Stem Data Conclusions


- Sites T1 & T2 had significant reductions in Mean EWM stem length from July-September. Also, both sites had significant increase in index of weevil damage to EWM stems (site T1 had a higher damage index value) Was this due to less hybrids or higher stem densities??
- Sites T1 and C1 had highest stem densities of evaluation sites.
- The number of stem lateral branches increased in late summer...due to seasonal growth effect or weevil stimulation?
- Current data set strong after stocking 54,000 weevils in Round Lake during 2009 EWM beds used in Evaluation during 2008 are sparse with some areas absent

# Weevil Stocking Sites used in 2009



### Lake-Specific Management Conclusions:

- Management options should consider lake ecology, physicochemical characteristics, longevity of solution, potential impacts to the ecosystem, riparian needs/philosophies, and costs
- In nutrient-rich systems and lakes with large, predominantly impervious watersheds, watershed management is a <u>critical</u> component for long-term success
- Lake management techniques should aim to work with nature to avoid further alteration of system and reduce maintenance when possible (Note: this is often unattainable, especially for artificial aquatic ecosystems)

