Evaluating Long-Term Groundwater Resource Sustainability in Ottawa County with Data-Intensive Scientific Modeling

Zachary Curtis
Doctoral Student, Michigan State University
Department of Civil & Environmental Engineering
November 13, 2015

"Evaluating Long-term Groundwater Resource Sustainability..."

- How much fresh groundwater is available for long-term use in Ottawa County?
- How does this depend on land use or climate change? Sub-surface geology?
- What does the groundwater quality distribution look like (2D, 3D)?
- Has the water quality changed in recent decades? If so, why?

Elevated groundwater salinity

"...Data-Intensive Scientific Modeling"

- Quantify groundwater use
- Characterize climate (meteorological observations)
- Collect water quality data ...
 - identify patterns, connections, relationships (hydrology <-> geology <-> water use <-> water quality)
 - Past and present
 - -> determine source(s), controls, non-factors
- → Derive "water budget"; predict & forecast future water quality/quantity

Background & Motivation (Cl⁻ issues)

Ottawa County Water Resource Project – Phase 1

EPA
Secondary
Drinking
Water
Standard:
250 mg/L

Elevated chloride levels across parts of the County... Are other areas at risk?

Background & Motivation (Cl⁻ issues)

Ottawa County Water Resource Project - Phase 1

Color Map:

Groundwater hydraulic head

Red – high Blue – low

*Groundwater generally moves upwards in discharge zones

Phase 1 Cl⁻ Mapping – Some Limitations

Cl⁻ levels from WaterCHEM:

- Results span decades
 - Current extent of contamination?
 - Inconsistent spatial coverage for temporal analysis
- Surface water samples
- Spatial accuracy can be an issue
- No depth information
 - WaterCHEM linked to Wellogic...but uncertainties in geo-coding, Wellogic

→ Need for precise groundwater sampling in Ottawa County

Collecting Field Samples

- Fall 2014 present
- 543 samples collected from 468 locations across Ottawa County
- 100% voluntary participation from property owners, private businesses, and municipalities

Sampling Locations

- Attempted to cover all areas of Ottawa County
- GOAL: sample 75% deep (bedrock) wells, 25% shallow (drift) wells
- 343/543 samples from wells drilled 100+ ft deep (63% of total)
- 200/543 samples from wells drilled <100 ft deep (37% of total)

Undergraduate Sampling Technicians

- Employed ≈60 undergrads to help
- Sampled 115+

 locations in one
 day, on three
 separate occasions
- Valuable field experience for students
- Went through mandatory training
 - Handling samples, site safety and clean-up, etc.

Scientific Precision & Accuracy

- High spatial accuracy (<5 m lat.,long. position; well depth from drilling records)
- [Cl-] (mg/L) measured at MSU
 - Ion-selective electrode (ISE), EPA Standard Method 9212
 - Reproducibility ≈ ±2%

GPS coordinates taken at the wellhead location (when possible)

• QA/QC: Duplicates (\approx 10% sites), field blanks (\approx 5% sites), lab blanks, standards tested, $T_{standard} = T_{sample}$

I. Depth analysis

- In general, chloride concentration increases with depth
- Some deep wells have low concentrations
- Almost all shallow wells are below 250 mg/L

II. Areal distribution of [Cl-]

(plan view)

Phase I:

*Field sampling results confirm [Cl-] distribution found in Phase I

→ Some areas have wells with elevated Cl⁻ in close vicinity to wells with low Cl⁻...are the wells at different depths (see next slide)?

III. 3D visualization

Land surface from 10m DEM

Bedrock top interpolated from Wellogic data

III. 3D visualization

→ Wells with elevated chloride levels (>250 mg/L) are primarily concentrated in the bedrock aquifer (or deep drift), in the central part of Ottawa County

*Consistent with Phase 1 depth analysis (WaterCHEM <-> Wellogic)

Critical Question...

We know how the elevated chlorides are currently distributed in space... but has the contamination become worse in recent years?

- -> evaluate the temporal variation of chloride concentrations across decades (groundwater moves slow!)
- Ideally...evaluate chloride concentrations at different times for the same well...at many locations across the County
- -> New opportunity: mine/analyze Ottawa County Environmental Health private well records
 - water quality test results (well installation, real estate transfer, etc.)
 - Cl⁻ (mg/L), date, sample point, etc.

"First-cut" Temporal Analysis

Mined historical data from 249/468 properties visited in the field

Plot: Comparing the field result (current) to the historical result at the *same* location

- 378 data points (some locations had 2+ historical Cl⁻ results)
- Above 1:1 red line -> Field > Historical
- Below 1:1 red line -> Field < Historical
- → General increase in [Cl⁻]...

"First-cut" Temporal Analysis

62/75 field samples that are >250 mg/L have a higher Cl⁻ concentration than the historical result at the same location

General increase in [Cl⁻]... **especially** for [Cl⁻] > 250 mg/L

Digging Deep Through the Data

The "first-cut" temporal analysis indicates the Cl-concentrations at different locations across Ottawa County have INCREASED in recent decades

Questions to pursue:

- Where are the increases occurring?
- What is *causing* Cl⁻ levels to increase?
- What does the chloride "plume" look like at different points in time? (e.g., 1980s vs. 1990s vs 2000s)
- -> Continue mining data from areas of concern
 - To date, ≈2,400 records mined from central Ottawa County
 - Continue mining 16,000+ records
- -> 3D plume delineation and transport modeling

Research Network

Civil & Environmental Engineering (MSU)

Groundwater:

- Zachary Curtis
- Dr. Hua-sheng Liao
- Dr. Prasanna Sampath
- Dr. Shu-Guang Li

Surface Water

- Dr. Phanikumar Mantha
- Guoting Kang

Ottawa County Land Use & Planning

Aaron Bodbyl-Mast

Groundwater Task Force

Institute of Water Research (MSU)

GIS/Geography

•Dr. Dave Lusch

Thank you!...Questions?

Image references:

- 1. Texas Water Development Board: https://www.twdb.texas.gov/groundwater/
- 2. Environment Canada: https://www.ec.gc.ca/eau-water/default.asp?lang=En&n=23CEC266-1
- Final report, Ottawa County Water Resource Project, Phase I. Institute of Water Research, Michigan State University.
- 4. Ottawa County Environmental Health: https://www.miottawa.org/Health/OCHD/enviro.htm

