

Macatawa Area Coordinating Council

A Cooperative Effort Among Units of Government

Comprehensive Restoration Plan

- ✓ Phase two: Implementation
- ✓ Restoration Team
- ✓ Investment of \$11,976,000
- ✓ Multi-faceted approach
 - ID & Secure Land
 - Restoration
 - Best Management Practices (BMP)
- Education & Information
- Maintenance

Agricultural Projects

- 2018 projects included grassed waterways, cover crops, residue management, gypsum, and cover crop seeder
- 2200 acres of new cover crops funded through GLRI and PC
- Over 100 projects funded through Project Clarity's Agricultural Committee
- In total, over 24,000 acres of BMPs committed by project partners

Current status (2017)

Total phosphorus concentration, µg/L

Phosphorus

Historical Status (1972*; 1982-2012[†]; 2013-2017[‡])

Total phosphorus concentration (surface water), μg/ *U.S. EPA; [†]MDEQ; [‡]AWRI

10

Goal

Chlorophyll (Desirable

Chlorophyll a concentration, µg/L

90

100

*U.S. EPA; †MDEQ; ‡AWRI

Historical Status (1972*; 1982-2012[†]; 2013-2017[‡])

Turbidity Sensor Deployment

Maggie Oudsema

What is turbidity?

- Measure of water transparency
 - More particles → murkier water → higher turbidity

What is Turbidity?

- Measured in Nephelometric Turbidity Units (NTU)
 - Measure of light scattered by particles 90 degrees to incident beam
- The WHO established drinking water
 - No more than 5 NTU
 - Ideally below 1 NTU

Source: BEHFA

YSI 6000MS V2 Optical Monitoring Sonde

• Fits in 2-inch wells

Perfect for long termdeployment

• Can sample unattended

Self-cleaning wiper

• Cost: ~\$5,000

Photo credit: Fondirest Environmental, Inc.

YSI 6000MS V2 Optical Monitoring Sonde

- Records
 - Temperature
 - Conductivity
 - Turbidity
- Collects data every 30 minutes
- Data downloaded = monthly
- Calibrations = monthly
- Set out Spring-Fall since 2015

Project Clarity

Twisthink IoT Update

Nov 19, 2018

General Update

- Installed 2 IoT Devices in the late summer
- Data from the YSI Sensor was collected and transmitted up to the SigFox cloud during that time
 - Without compromising existing data collection methods
- Cloud platform and dashboard is almost fully operational

CONFIDENTIAL 15 November 2018

IoT System

IoT Device

Battery, Processor, SigFox Transmitter Elevated for Reception and to avoid high water

Cable

Connected to the YSI Sensor and stacked to the stream bed

YSI Sensor

Configured to log data locally

CONFIDENTIAL

SigFox Base Station

Receives IoT Device data up to 3 miles away

Cloud

Data is collected in the cloud

- 1. On SigFox Servers
- 2. Connected to Microsoft Azure Platform
 - This also grabs rainfall and water discharge

Dashboard

Data is presented on a dashboard via a web browser

20 November 2018

Dashboard Preview

Time Scale

Allows user to view data at different resolutions Day, week, month, etc

Location

Provides a reference of where the devices are located

Data Graphs

Users can view Precipitation, Discharge and Water Turbidity at the selected sensor sites

CONFIDENTIAL 20 November 2018