A Spring Lake Phosphorus Budget Analysis
based on Internal and External Loading Studies

M.C. Hassett, M.E. Oudsema, and A.D. Steinman
Grand Valley State University – Annis Water Resources Institute
Ottawa County Water Quality Forum
November 2018
Spring Lake, Michigan
Spring Lake 1999-2005 (Pre-Alum)
Total Phosphorus

Data: Progressive AE
Objectives: Spring Lake Studies

- 2004: Measure internal P loading and effectiveness of alum (sediment cores)
- 2006: Measure 1 year alum efficacy (sediment cores)
- 2010: Measure 5 year alum efficacy and benthos (sediment cores and ponar grabs)
- 2016: Measure 11 year alum efficacy and benthos (sediment cores and ponar grabs)
- 2017: Measure external loading, microcystins, and nutrient bioassay
SRP
bioavailable

Uptake

Release

SRP
particulate

Resuspension

Precipitation
(Oxic: Fe)

Mineralization

SRP
bioavailable

Diffusion
(anoxic)

+SAlum

SRP
particulate

Sedimentation
Objectives: Spring Lake Studies

• 2004: Measure internal P loading and effectiveness of alum (sediment cores)
• 2006: Measure 1 yr alum efficacy (sediment cores)
• 2010: Measure 5 yr alum efficacy and benthos (sediment cores and ponar grabs)
• 2016: Measure 11 yr alum efficacy and benthos (sediment cores and ponar grabs)
• 2017: Measure external loading, microcystins, and nutrient bioassay
Mean TP Sediment Release Rates (mg P/m²/d; hypoxic conditions)

<table>
<thead>
<tr>
<th>Year</th>
<th>2003 (pre-alum)</th>
<th>2006 (8 months post-alum)</th>
<th>2010 (5 years post-alum)</th>
<th>2016 (11 years post-alum)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>17.97<sup>a</sup></td>
<td>0.41<sup>b</sup></td>
<td>1.14<sup>c</sup></td>
<td>1.25<sup>d</sup></td>
</tr>
</tbody>
</table>

^aSteinman et al. (2004)
^bSteinman et al. (2008)
^cSteinman and Ogdahl (2012)
^dSteinman et al. (2018)
Mean Water Column TP Concentrations

<table>
<thead>
<tr>
<th>Site</th>
<th>Depth</th>
<th>TP Concentration (μg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Surface</td>
<td>60</td>
</tr>
<tr>
<td>2</td>
<td>Surface</td>
<td>110</td>
</tr>
</tbody>
</table>
Spring Lake Invertebrate Densities

alum application
Objectives: Spring Lake Studies

- 2004: Measure internal P loading and effectiveness of alum (sediment cores)
- 2006: Measure 1 yr alum efficacy (sediment cores)
- 2010: Measure 5 yr alum efficacy and benthos (sediment cores and ponar grabs)
- 2016: Measure 11 yr alum efficacy and benthos (sediment cores and ponar grabs)
- 2017: Measure external loading, microcystins, and nutrient bioassay
Baseflow Mean P Concentrations: 6/17-6/18 (µg/L); n=12
Stormflow Mean P Concentrations: 6/17-6/18 (µg/L); n=4

- **Norris 1**: SRP: 10, TP: 95
- **Norris 2**: SRP: 11, TP: 100
- **Norris 3**: SRP: 19, TP: 125
- **Rhymer**: SRP: 8, TP: 90
- **Willow Hill**: SRP: 7, TP: 65
- **Vincent**: SRP: 7, TP: 66
- **Stevens**: SRP: 9, TP: 77
External Tributary P Loading

<table>
<thead>
<tr>
<th></th>
<th>Site Avg TP (µg/L)</th>
<th>Q (af/season or year)</th>
<th>Tributary Loading (kg TP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer (May-Sep)</td>
<td>28.2</td>
<td>12,307</td>
<td>427</td>
</tr>
<tr>
<td>Winter (Oct-Apr)</td>
<td>15.0</td>
<td>34,378</td>
<td>1,194</td>
</tr>
<tr>
<td>Annual (12 months)</td>
<td>20.7</td>
<td>46,685</td>
<td>1,621</td>
</tr>
</tbody>
</table>
Spring Lake P Budget

<table>
<thead>
<tr>
<th>Data</th>
<th>Source</th>
<th>Mean Annual P (kg)</th>
<th>Mean Annual P (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal loading</td>
<td>Steinman et al. (2017)</td>
<td>1,007</td>
<td>28.6</td>
</tr>
<tr>
<td>Tributary loading</td>
<td>Current study</td>
<td>1,621</td>
<td>46.0</td>
</tr>
<tr>
<td>Data</td>
<td>Source</td>
<td>Mean Annual P (kg)</td>
<td>Mean Annual P (%)</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Internal loading</td>
<td>Steinman et al. (2017)</td>
<td>1,007</td>
<td>28.6</td>
</tr>
<tr>
<td>Tributary loading</td>
<td>Current study</td>
<td>1,621</td>
<td>46.0</td>
</tr>
</tbody>
</table>

Spring Lake P Budget
Spring Lake P Budget

<table>
<thead>
<tr>
<th>Data</th>
<th>Source</th>
<th>Mean Annual P (kg)</th>
<th>Mean Annual P (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal loading</td>
<td>Steinman et al. (2017)</td>
<td>1,007</td>
<td>28.6</td>
</tr>
<tr>
<td>Tributary loading</td>
<td>Current study</td>
<td>1,621</td>
<td>46.0</td>
</tr>
<tr>
<td>Atmospheric deposition</td>
<td>Brennan et al. (2015)</td>
<td>76</td>
<td>2.2</td>
</tr>
<tr>
<td>Septage</td>
<td>Lauber (1999)</td>
<td>491</td>
<td>13.9</td>
</tr>
<tr>
<td>Waterfowl</td>
<td>Lauber (1999)</td>
<td>16</td>
<td>0.5</td>
</tr>
<tr>
<td>Lawn fertilizer</td>
<td>Lauber (1999)</td>
<td>267</td>
<td>7.6</td>
</tr>
<tr>
<td>Shoreland runoff</td>
<td>US EPA (1996)</td>
<td>48</td>
<td>1.4</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>3,526</td>
<td>100.2</td>
</tr>
</tbody>
</table>
Spring Lake P Budget

<table>
<thead>
<tr>
<th>Data</th>
<th>Source</th>
<th>Mean Annual P (kg)</th>
<th>Mean Annual P (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal loading</td>
<td>Steinman et al. (2017)</td>
<td>1,007</td>
<td>28.6</td>
</tr>
<tr>
<td>Tributary loading</td>
<td>Current study</td>
<td>1,621</td>
<td>46.0</td>
</tr>
<tr>
<td>Atmospheric deposition</td>
<td>Brennan et al. (2015)</td>
<td>76</td>
<td>2.2</td>
</tr>
<tr>
<td>Septage</td>
<td>Lauber (1999)</td>
<td>491</td>
<td>13.9</td>
</tr>
<tr>
<td>Waterfowl</td>
<td>Lauber (1999)</td>
<td>16</td>
<td>0.5</td>
</tr>
<tr>
<td>Lawn fertilizer</td>
<td>Lauber (1999)</td>
<td>267</td>
<td>7.6</td>
</tr>
<tr>
<td>Shoreland runoff</td>
<td>US EPA (1996)</td>
<td>48</td>
<td>1.4</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>3,526</td>
<td>100.2</td>
</tr>
</tbody>
</table>
2017 Spring Lake data
Spring Lake Microcystin monitoring 2017:
Nutrient Bioassay

- 4 treatments:
 • Control
 • Nitrogen alone
 • Phosphorus alone
 • N+P

- 3 replicates/treatment

- 7-day incubation

- Measure Δ in nutrients and Chl-α
Change in Bioavailable P

Su et al. (In Preparation)

SRP (mg/L)

Control N P N+P

Su et al. (In Preparation)
Change in Nitrate

Su et al. (In Preparation)
Chlorophyll a (μg/L)

- C
- N
- P
- N+P

Mean initial chl a concentration

29 μg/L

p < 0.001

Su et al. (In Preparation)
Summary

• Alum application has been effective for >10 years
• Efficacy may be starting to wane at deeper sites; continued monitoring recommended
• External P loading is a major source of P to Spring Lake
• Long-term solutions to P management should include BMPs to reduce or mitigate external P from the Spring Lake watershed
• Control of N also important for Spring Lake management
Acknowledgements

• Funding: Spring Lake – Lake Board; MI Sea Grant
• Progressive AE: Tony Groves, Pam Tyning
• Lake access: The Steffel Family
• AWRI: Brian Scull, Rick Rediske, Kurt Thompson, Lidiia Iavorivska, Xiaomei Su, Emily Kindervater, Kim Oldenburg, Paige Kleindl, Brooke Ridenour
Questions?