

Selected pesticide and trace organics monitoring studies, statewide context for observations from the Grand River

Joe Duris Water Quality Specialist USGS Michigan Water Science Center In Cooperation with Michigan Department of Environmental Quality and Great Lakes Restoration Initiative

U.S. Department of the Interior U.S. Geological Survey

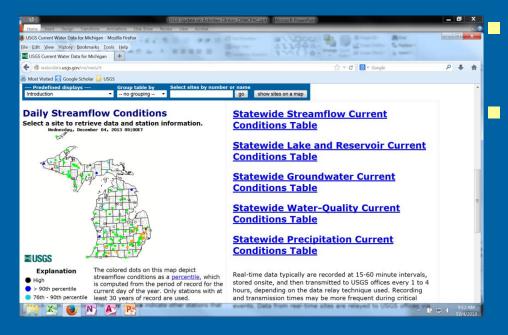
U.S. Geological Survey (USGS)

- Provide reliable, impartial, timely
 information that is needed to understand
 the Nation's water resources. USGS Water
 Mission Area actively promotes the use of
 this information by decision makers to
 - Minimize the loss of life and property
 - Effectively manage ground-water and surfacewater resources for multiple uses
 - Protect and enhance water resources for human health, aquatic health, and environmental quality
 - Contribute to wise physical and economic development of the nations water resources

Grand River Activities Overview

Ongoing or past studies and activities

- USGS Stream gages (NSIP/Local Cooperators)
- Water Chemistry Monitoring Program (MDEQ WCMP)
- Great Lakes Restoration Initiative Tributary Monitoring (USGS GLRI)
- USGS Cooperative Water Program Studies (CWP)


Expanded Studies

Grand River chemicals of emerging concern, spatial characterization (USGS GLRI)

Grand River Basin									
<u>04109000</u>	GRAND RIVER AT JACKSON, MI	11/06 17:30 EST	8.90	66	76.0				
<u>04111000</u>	GRAND RIVER NEAR EATON RAPIDS, MI	11/06 18:00 EST	2.07	271	268				
<u>04111379</u>	RED CEDAR RIVER NEAR WILLIAMSTON, MI	11/06 17:15 EST	3.95	48	54.0				
<u>04112000</u>	SLOAN CREEK NEAR WILLIAMSTON, MI	11/06 17:45 EST	1.84	1.6	.78				
<u>04112500</u>	RED CEDAR RIVER AT EAST LANSING, MI	11/06 17:30 EST	3.50	107	88.0				
<u>04112850</u>	SYCAMORE CREEK AT HOLT ROAD NEAR HOLT, MI	11/06 17:15 EST	3.11	24	13.0				
<u>04113000</u>	GRAND RIVER AT LANSING, MI	11/06 17:45 EST	2.89	478	433				
<u>04114000</u>	GRAND RIVER AT PORTLAND, MI	11/06 17:45 EST	5.89	539	559				
<u>04114498</u>	LOOKING GLASS RIVER NEAR EAGLE, MI	11/06 17:45 EST	2.93	98	72.0				
<u>04115000</u>	MAPLE RIVER AT MAPLE RAPIDS, MI	11/06 17:15 EST	4.08	131	86.0				
<u>04115265</u>	FISH CREEK NEAR CRYSTAL, MI	11/06 18:00 EST	2.89	41	30.0				
<u>04116000</u>	GRAND RIVER AT IONIA, MI	11/06 17:45 EST	8.91	1,170	1,140				
<u>04116500</u>	FLAT RIVER AT SMYRNA, MI	11/06 18:00 EST	3.90						
<u>04117000</u>	QUAKER BROOK NEAR NASHVILLE, MI	11/06 18:00 EST	1.92	5.9	4.70				
<u>04117500</u>	THORNAPPLE RIVER NEAR HASTINGS, MI	11/06 17:15 EST	3.34	178	174				
<u>04118000</u>	THORNAPPLE RIVER NEAR CALEDONIA, MI	11/06 17:30 EST	3.83						
<u>04118105</u>	GRAND RIVER AT ADA, MI	11/06 17:30 EST	7.78						
<u>04118500</u>	ROGUE RIVER NEAR ROCKFORD, MI	11/06 17:00 EST	4.25	195	192				
<u>04119000</u>	GRAND RIVER AT GRAND RAPIDS, MI	11/06 17:00 EST	3.51	2,730	2,230				
<u>04119055</u>	PLASTER CREEK AT 28TH STREET AT GRAND RAPIDS, MI	11/06 17:00 EST	3.92	23					
<u>04119400</u>	GRAND RIVER NEAR EASTMANVILLE, MI	11/06 17:48 EST	<u>Dis</u>	<u>Dis</u>	2,720				

USGS Stream Gages

current conditions

- Grand: 20 gages
- 1 continuous water quality gage in the area [Eastmanville]
 - Customizable plots for all data since 2007
 - Useful to direct sampling efforts
 - Continued GLRI funding is currently uncertain, water quality data collection currently suspended

USGS-MDEQ Cooperative Pesticide Monitoring

Use of immunoassay for the detection of atrazine, metolachlor, simazine, chlorpyrifos, and diazinon in streams

Immunoassay-Pros and Cons

PROS	CONS
Inexpensive	Can only analyze one analyte at a time
High throughput	High detection limit
Quick screening	Non-specific

Immunoassay Detection Limits Usage Lab Immunoassay detection limit analysis detectio n limit Herbicides Several crops, majority on corn and 0.046 µg/L 0.001 µg/L Atrazine soybeans Metolachlor 0.05 µg/L 0.002 µg/L Several crops, majority on corn and soybeans Simazine Several crops, primarily fruits and urban 0.03 µg/L 0.005 µg/L weed control Insecticides Primarily urban insect control, little on 0.022 µg/L 0.002 µg/L Diazinon field crops, being phased out Chlorpyrifos Widely used on field crops, being phased $0.1 \,\mu g/L$ 0.004 µg/L out as a urban use Aldicarb Primarily for soybean aphid control $4 \mu g/L$ 0.016 µg/L

Immunoassay vs. GS/MS

Triazine Concentration in ug/L

	Dete	Triazine	Triazine
USGS station name	Date sampled	screen (Field)	screen (Lab)*
Pigeon River near Scott, Ind.	7/10/2001	2.00	0.655
Solomon Creek near Syracuse, Ind.	7/11/2001	.05	.126
East Branch Galien River, Mich.	9/2/2003	.12	.087
Galien River near Sawyer, Mich.	9/2/2003	.08	.051

2005 Monitoring Study

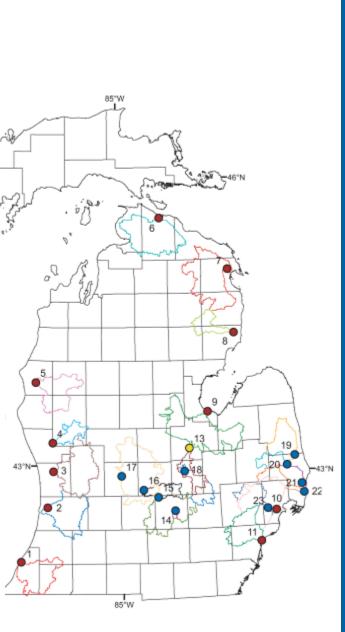
- 1. Measure pesticide concentrations at selected stream sites throughout Michigan.
- Provide data that will increase understanding as to when and where to sample most effectively for pesticides.
- 3. Provide data to aid in the development of a more comprehensive monitoring study.
- 4. Correlate pesticide concentrations with other water-quality constituents.

http://pubs.usgs.gov/sir/2007/5077/

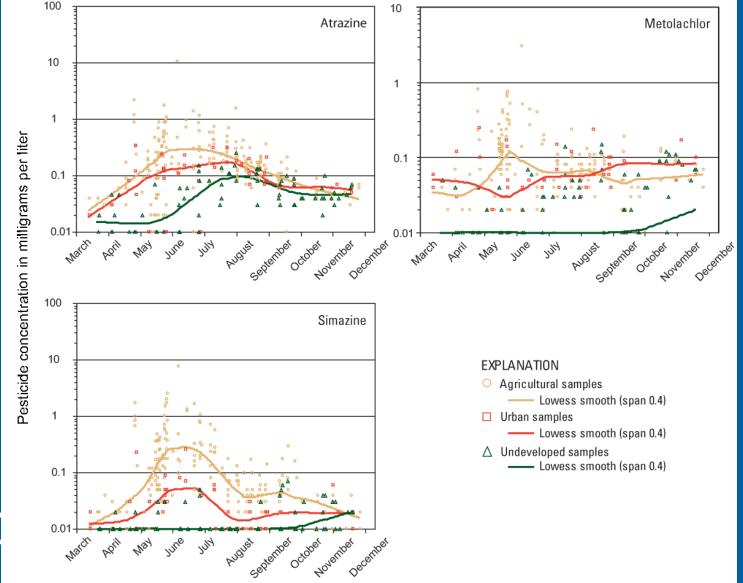
In cooperation with Michigan Department of Environmental Quality

Screening for the Pesticides Atrazine, Chlorpyrifos, Diazinon, Metolachlor, and Simazine in Selected Michigan Streams, March–November 2005

Scientific Investigations Report 2007-5077

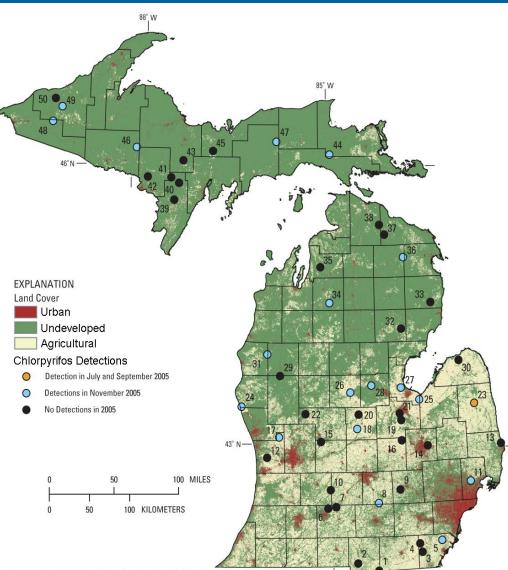

U.S. Department of the Interior U.S. Geological Survey

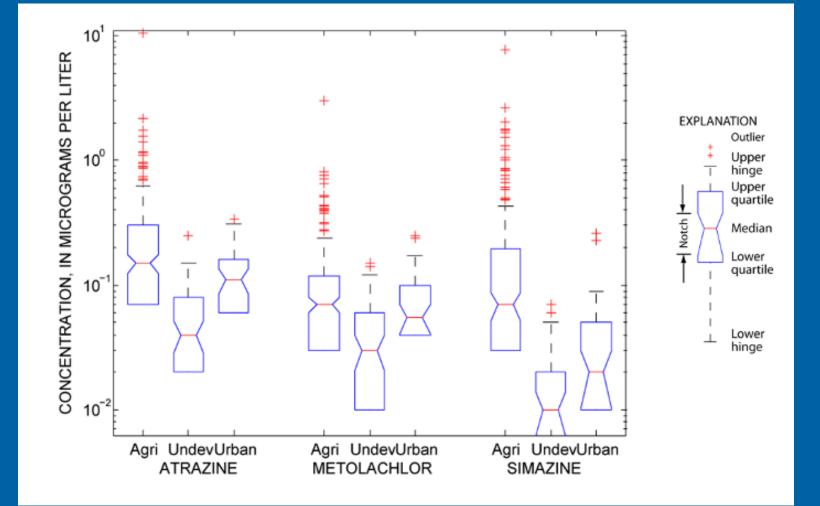
MDEQ WCMP


- 13 sites
- Sampled 12 times April-November

Focused Study

- 11 Sites
- Sampled about twice a month April-September
- Daily sampling after herbicide application (May/June)


Seasonal Patterns in Herbicide Concentrations


Seasonal Patterns in Insecticide Concentrations

- Diazinon was not detected in any samples
- Chlorpyrifos was not detected in samples from watershed monitoring study
- Chlorpyrifos was detected in MDEQ statewide assessment in 18 out of 50 sites in Nov. and 1 site in July and Sept., 2005

Source Data: IF MAP Land Cover data from the Michigan Department of Natural Resources 2001.

Influence of Land-Use

Where does the Grand River fit?

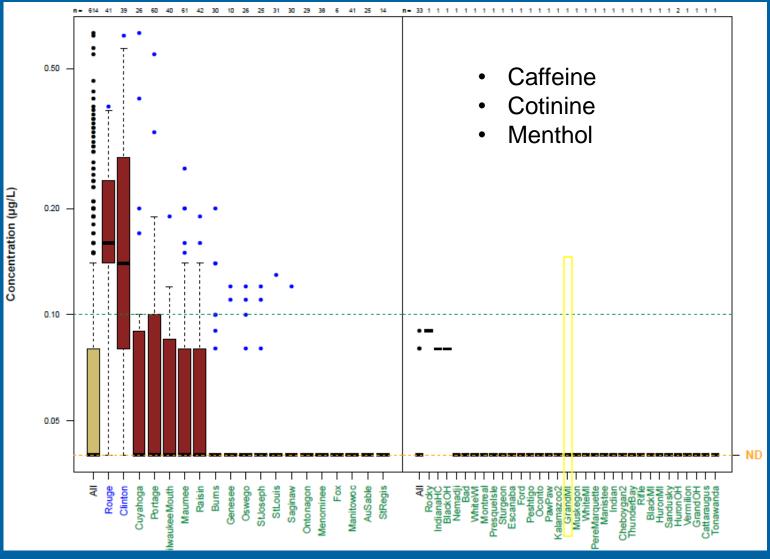
[USGS, U.S. Geological Survey; MDL, method detection limit; µg/L, micrograms per liter]

USGS station number	Stream name (location)	Total number samples	Number detections	Detected concentration (µg/L)		
			above the MDL	Maximum	Mean	Mediar
04102080	St. Joseph River	12	9	0.90	0.21	0.15
04108660	Kalamazoo River	12	9	.16	.09	.09
04111500	Deer Creek	14	10	.48	.16	.08
04113000	Grand River (Lansing)	14	14	.88	.26	.17
04114498	Looking Glass River	14	11	.30	.12	.11
04116000	Grand River (Ionia)	14	13	1.41	.24	.14
04119400	Grand River (Eastmanville)	12	7	.86	.17	.09
04122030	Muskegon River	12	6	.25	.06	.05
04122500	Pere Marquette River	12	3	.10	.04	.04
04132052	Cheboygan River	12	6	.12	.05	.05
04135020	Thunder Bay River	12	4	.15	.06	.05
04137500	Au Sable River	12	5	.14	.05	.04
04144500	Shiawassee River (Owosso)	14	12	.40	.15	.12
04145000	Shiawassee River (Fergus)	26	20	.97	.20	.13
04157065	Saginaw River	12	10	.71	.28	.27
04159492	Black River	16	15	10.55	1.04	.31
04159900	Mill Creek	15	12	.90	.25	.14
04160398	Pine River	16	14	1.75	.61	.45
04160625	Belle River	17	16	1.18	.36	.32
04161820	Clinton River (Sterling Heights)	19	14	.24	.09	.08
04165553	Clinton River (Mt. Clemens)	11	9	.34	.16	.15
04168550	River Rouge	11	9	.23	.11	.11
040590345	Escanaba River	11	6	.15	.06	.06

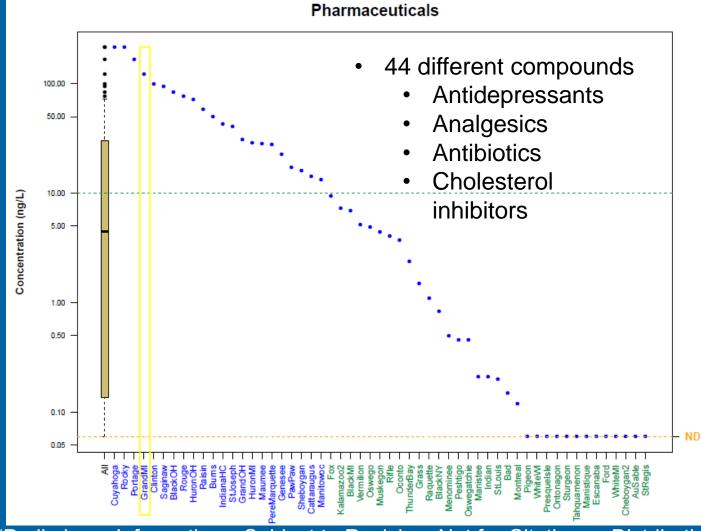
Conclusions

- Immunoassay are an inexpensive method to screen a large number of samples for select pesticides
- Monitoring studies in Michigan have shown:
 - 1. Atrazine, metolachlor, and simazine are usually only detected in low concentrations in stream water.
 - 2. Highest concentrations typically occur in late Spring
 - **3.** Highest pesticide concentrations occurred in agricultural areas; however, there was little statistical difference in the overall concentrations between urban and agriculture land-use samples
 - 4. Areas with little development in MI, had very few pesticide detections

GLRI Tributary Monitoring

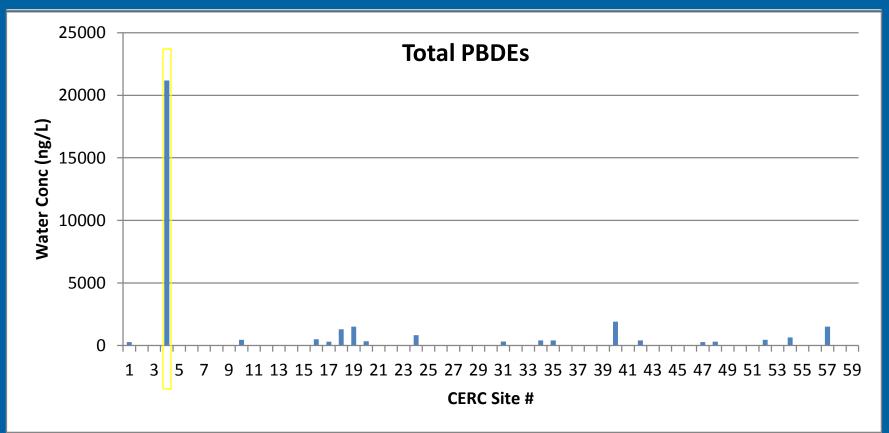

- Nutrients, sediment, major ions, and continuous water quality
 - Temp, pH, Specific Conductance, DO, Turbidity
- Isco auto-sampler, automated virus sampler, flow integrated samples, & passive sampler
- Pathogens, fDOM, emerging chemicals
 - Goal: Develop relations with co-occurring contaminants and surrogates
 - Ongoing since 2010
 - Currently developing surrogate relations

"This information is preliminary and is subject to revision. It is being provided to meet the need for timely best science. The information is provided on the condition that neither the U.S. Geological Survey nor the U.S. Government may be held liable for any damages resulting from the authorized or unauthorized use of the information."


Example of Wastewater analysis

≥USGS

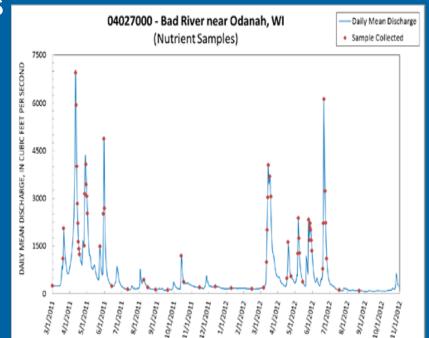
"Preliminary Information—Subject to Revision. Not for Citation or Distribution"


How does the Grand compare to other sites?

USGS

"Preliminary Information—Subject to Revision. Not for Citation or Distribution"

Elevated Total PBDEs (flame retardants)

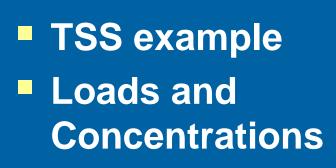


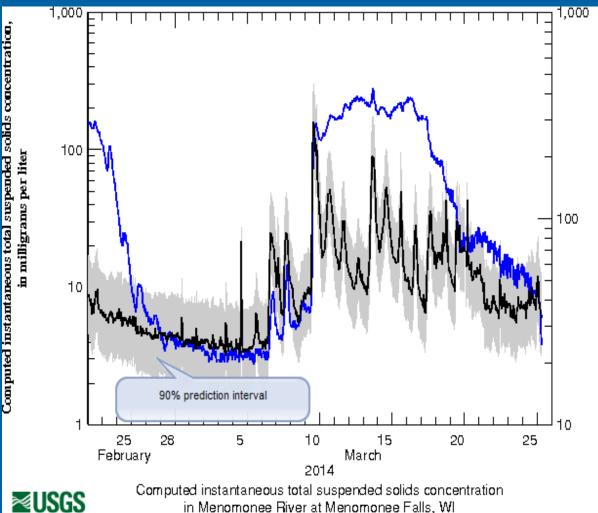
USGS "Preliminary Information—Subject to Revision. Not for Citation or Distribution"

Original Tributary Monitoring Design

30 sites on tributaries to the Great Lakes

- Automated samplers
- Water-quality multi-sensor probes
- Monthly fixed-interval samples
- Plus up to 6 storm events per year, with up to 6 samples collected over the hydrograph during each event
- Most samples collected with ISCO samplers.





"Preliminary Information—Subject to Revision. Not for Citation or Distribution"

Planned Output for Each Tributary -

based on regressions with real-time surrogates

"Preliminary Information—Subject to Revision. Not for Citation or Distribution"

conputed discharge, in cubic feet per secon

Preliminary Load estimates for GRAND RIVER NEAR EASTMANVILLE, MI (USGS station 04119400)

Loads were computed using streamflow and water quality data from the GLRI stations across the Great Lakes. An average daily load computed using the LOADEST code for statistical program R is presented by water year in the following tables. These load estimates are provisional and should not be considered approved.

"Preliminary Information—Subject to Revision. Not for Citation or Distribution"

Total Nitrogen Load Grand River near Eastmanville, MI

Table of Nitrogen, mixed forms (NH3), (NH4), organic, (NO2) and (NO3) average daily load in kg/d.

Period	No. of Days	Load	Std. Error	Std. Error of Prediction	L95 CI	U95 CI
WY 2011	314					
WY 2012	366	29377	861	912	27630	31205
WY 2013	365	36389	978	1095	34289	38581
WY 2014	92					

Total Suspended Sediment Load Grand River near Eastmanville, MI

Period	No. of Days	Load	Std. Error	Std. Error of Prediction	L95 CI	U95 CI
WY 2011	314					
WY 2012	366	152139	18445	19282	117850	193300
WY 2013	365	598311	132892	143655	365793	925290
WY 2014	92					

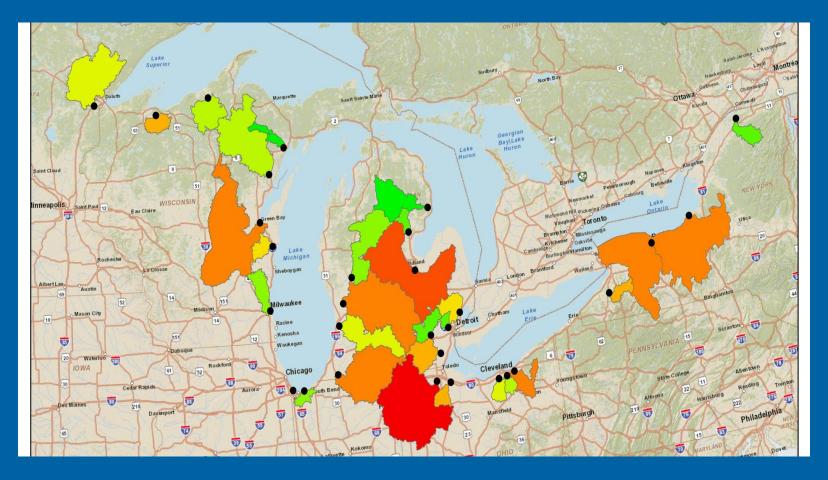

Total Phosphorus Load Grand River near Eastmanville, MI

Table of Phosphorus average daily load in kg/d.

Period	No. of Days	Load	Std. Error	Std. Error of Prediction	L95 CI	U95 CI
WY 2011	314					
WY 2012	366	870	44	46	783	963
WY 2013	365	1640	129	136	1390	1922
WY 2014	92					

Relative Load of Orthophosphate

USGS <u>"Preliminary Information—Subject to Revision. Not for Citation or Distribution"</u>

Future Directions

- Grand River at Eastmanville, MI site is included in current plans for continued GLRI monitoring
 - GLRI Tributary monitoring
 - Nutrients, sediment, chloride, continuous sondes
 - GLRI toxic substances monitoring
 - Routine wastewater/chemical of emerging concern monitoring
 - Passive sampling to integrate over time
 - Focus contaminants by year
 - PCBs, Flame retardants, pharmaceuticals/antibiotics, etc.

Questions?

Joe Duris Water Quality Specialist USGS Michigan Water Science Center Phone: 517-887-8942 Email: jwduris@usgs.gov

