
Macatawa Watershed Escherichia coli
Levels and Population Genomics
Aaron A. Best, Ph.D.
Harrison C. and Mary L. Visscher Professor of Genetics

November 30, 2017

best@hope.edu | @aaron_best



Macatawa Watershed Restoration



Project Clarity Restoration Plan

üPhase One: Research Results

üPhase Two: Implementation

üRestoration Team

ü Investment of $11,976,000

üMulti-faceted approach

• ID & Secure Land 
• Restoration
• Best Management Practices (BMP)
• Education & Information
• Maintenance



Macatawa Watershed
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Improving retention in the STEM fields for broad set of students:

Research experience
Residential component
Pre-college component
Peer mentors in courses
First Year Seminar
Intro Chem Lab
Intro Bio Lab

Day1: Watershed
Residential Research Community

www.hope.edu/Day1



Primary Projects
• Establishing Baseline Data for Chemical & Microbial Loads
• Weekly sampling
• Year long (August 2016 – August 2017)
• Chemical – Total Suspended Solids, Phosphate, Nitrate, Dissolved Oxygen, Biochemical Oxygen 

Demand
• Physical – Flow rates, Temperature, pH
• Microbial – Escherichia coli counts; Total bacterial community census
• How do microbial communities respond to large perturbation (rain events)?

• What kinds of E. coli are present?
• Isolation of individual E. coli types
• Full genomic sequencing of isolated E. coli
• Analysis for potential to cause disease; potential for antibiotic resistances
• Ultimately – “who” are they? Are there better ways to monitor?
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Sampling Events

Physical Measurements

Filtration – E. coli

E. coli Counts and Isolates

Filtration – Total DNA

DNA Isolation 
& Sequencing

Data Integration

Day1 Watershed
Course Research 
Experience



Weekly Sampling – Full Year



Weekly Sampling – Full Year

Spring Summer

Summer Fall Fall Winter

Winter Spring Spring Summer

Calendar	Season

Transition Summer

Summer Transition Winter

Winter Transition Transition Summer

Water	Temperature



Total Suspended Solids

• Total Suspended Solids (TSS)
• High flow conditions

• Stream sites on average higher than Lake sites
• Extreme outliers observed in Stream sites
• Lake site average levels vary by 2-fold range compared to low 

flow conditions

• Dilution effect from east to west in Lake sites
• Correlated with PO4
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2016-17 Suspended Solids Levels – Low Flow



2016-17 Suspended Solids Levels – High Flow



Total Suspended Solids

• Total Suspended Solids (TSS)
• High flow conditions

• Stream sites on average higher than Lake sites
• Extreme outliers observed in Stream sites
• Lake site average levels vary by 2-fold range compared to low 

flow conditions

• Dilution effect from east to west in Lake sites
• Correlated with PO4

3-

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●
●●

●

●
●

0

200

400

600

800

1000

Lake Stream

TS
S 

(m
g/

L)

High Flow
Low Flow



●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

0

200

400

600

800

1000

Lake Stream

PO
4 

(u
g/

L)

High Flow
Low Flow

Phosphate Levels
• Goal is under 50 ppb total P (70% reduction)
• Measuring PO4

2- -- underestimates total P
• Low Flow Conditions

• Lake Sites – generally below target
• Stream Sites – generally above target for lake

• High Flow Conditions
• All sites above target for lake
• Increases by 2 to 4-fold at all sites compared to low flow 

conditions

50	ppb	P	target



2016-17 Phosphate Levels – Low Flow



2016-17 Phosphate Levels – High Flow
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Nitrate Levels
• Drinking water regulated – below 10 ppm
• Not regulated for streams and lakes
• Low Flow Conditions higher in both lake and stream 

sites
• Outlier sampling events with high measured levels
• Can be limiting nutrient in cyanobacterial (algal) 

bloom formation



2016-17 Nitrate Levels – Low Flow



2016-17 Nitrate Levels – High Flow
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E. coli Counts
• Colony Forming Units (CFU)
• EPA Method 1603 (mTEC plate counts)
• Lake Sites generally lower than total body contact 

limit in high and low flow conditions – with 
exceptions

• Stream Sites generally above total body contact limit 
in high and low flow conditions – sometimes well 
above partial contact limit in high flow conditions

130	CFU/100	mL	– 30	Day	geometric	mean	– total	body	contact	limit
300	CFU/100	mL	– Daily	– total	body	contact	limit	(May	to	October)

1000	CFU/100	mL	–
Daily	– partial	body	contact	limit	(All	Year)



2016-17 E. coli Levels – Low Flow



2016-17 E. coli Levels – High Flow
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Google	Search	Term:	michigan deq e	coli
Also	see	“E.	coli	in	Surface	Waters”	web	page



MDEQ Interactive Map – E. coli TMDL



Weekly Sampling – June/July 2017
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June-July 2017 E. coli Levels 30 Days



Primary Projects
• Establishing Baseline Data for Chemical & Microbial Loads
• Weekly sampling
• Year long (August 2016 – August 2017)
• Chemical – Total Suspended Solids, Phosphate, Nitrate, Dissolved Oxygen, Biochemical Oxygen 

Demand
• Physical – Flow rates, Temperature, pH
• Microbial – Escherichia coli counts; Total bacterial community census
• How do microbial communities respond to large perturbation (rain events)?

• What kinds of E. coli are present?
• Isolation of individual E. coli types
• Full genomic sequencing of isolated E. coli
• Analysis for potential to cause disease; potential for antibiotic resistances
• Ultimately – “who” are they? Are there better ways to monitor?



Not All E. coli Are Created Equal
• Model organism for microbiology, genetics and molecular 

biology
• Commensal organism in animal guts
• Pathogenic Strains – gastrointestinal, UTIs, food poisoning, 

many classifications (e.g., EPEC, ExPEC, EHEC, ETEC, 
EAEC, EIEC, UPEC, APEC)

• Used in routine water quality monitoring – EPA and State 
Guidelines

• Thousands of publically sequenced genomes
• Vast majority are from clinical sources
• Highly diverse genus with respect to genome content
• Evidence for adaptation to secondary environments (e.g., soil, water)
• Is E. coli a good organism to use as proxy for sewage contamination 

of water resources?

Kaas RS,	et	al.	2012.	BMC	Genomics	13:577.



• Family Tree of E. coli
• 104 watershed strains
• 97 reference strains
• Environmental
• Commensals
• Laboratory
• Pathogens

• Watershed
• All subgroups found
• 46% group B1 – found 

often in water
• Present year round

A

B1

B2

D1

D2

D3
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F1

F2

Clade I

Clade II

Clade III

Clade IV

Clade V

Shigella I

Shigella III

E. albertii

E. fergusonii

Unclassified

Shigella IIa



Virulence Factors Summary by Phylogroup
• Virulence Factor Database (VFDB)
• PATRIC (www.patricbrc.org) specialty 

gene interface
• Groupings include reference and 

watershed strains
• Average number of VFs for major 

groups of Escherichia and Shigella vary 
significantly (ANOVA)
• Shigella significantly higher than all other 

groups (p < 0.01)
• Phylogroup B2 significantly higher than 

phylogroups A, B1, D1 and cryptic clades 
(p < 0.01)

• Phylogroup F1 significantly higher than 
cryptic clades (p < 0.05)
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Virulence Factors Summary by Strain Classification
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Strain Classification Non−Pathogenic Pathogenic Watershed

• Virulence Factor Database (VFDB)
• PATRIC (www.patricbrc.org) specialty 

gene interface
• Subgrouping of All Strains
• Reference Pathogenic Strains
• Reference Non-Pathogenic Strains
• Watershed Strains

• Significant differences in average 
number of VFs for groups (ANOVA)
• All phylogroups combined (p < 0.01)
• Phylogroup B1 pathogenic higher than 

both non-pathogenic and watershed (p << 
0.001)

• Phylogroup A Watershed Strain 
Outliers – functions of VFs enriched in 
same categories as for known 
pathogen reference strains





Physiological Adaptation? Cold Metabolism

Fermentation
Day	13

2°C 
(# of strains)

5°C 
(# of strains)

8°C	
(#	of	strains)

11°C	
(#	of	strains)

No Change 12 3 0 0

Weak 12 9 1 0

Weak Acid 4 4 0 0

Acid 0 8 0 0

Strong Acid 0 4 27 28



Hope	College	students	since	Fall	
2015	– Over	120

Hamilton	High	School	Stream	
School	– 30	students

Holland	Christian	High	School	
Winterim Internships	– 3		students
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