Reimagining the Traditional Lawn

Kylie Vosburg - Land Use Planner Department of Strategic Impact

1 all

History

First became popular ~17th-18th century

Symbols of wealth and success

Popularity in America exploded around the 1860s

Modern U.S. comprised of over 40 million acres

Credit: Planet Natural Research Center

Credit: William Gottlieb/CORBIS/Corbis via Getty Images, History.com

Library of Congress (1919)

Credit: Anne Cusack/Los Angeles Times via Getty Images, History.com

Cost of a Turf Lawn

High Water Use

- Nearly 30% of total residential water use
- Require ~200 gallons of potable water per person
- Up to ½ of water is wasted

High Gasoline Consumption

- \$1.2 billion gas annually
- ~35% used by commercial mowing
- 17 million gallons spilled annually
- Lawn mowers contribute up to 5% of total air pollution

Time Consuming

- 58% dislike mowing lawns
- 70 hours per year
- 22 times per year per person
- Cost of labor

Credit: H2OC Stormwater Program

Turf Monoculture. . . (Cost Cont.)

Turf Monoculture

- Largest irrigated 'crop'
- Est. 90 million lawns in America

To achieve the monoculture...

- Synthetic/Chemical Fertilizers
 - 50% use
 - Est. \$128 million
- Insecticides
 - 51% use
 - \$3.35 billion
- Herbicides
 - 52% use
 - \$910 million

Credit: Jeff Swano (2017) Digrightin Landscaping

•••

Turf Monoculture. . . (Cost Cont.)

Health risks

- Birth defects
- Cancer
- Neurological impairments
- Immunodeficiencies
- Lymphoma in pets

Environmental risks

- Increased nutrient load in waterways
- Algal blooms
- Wildlife/pollinator harm
- Soil degradation

		Health Effects						
www.beyondpesticides.		Endocrine Disruption	Reproductive Effects	Neurotoxicity	Kidney/Liver Damage	Sensitizer/ Irritant	Birth Defects	
Herbicides								
2,4-D*	X4	X10	X7	Xs	Xs	X1	X11	
Atrazine ¥	X ⁹	Xe	X ^a	X ¹¹	X ¹¹	X ¹¹	X ^a	
Benfluralin	×	× .			X1	X ¹		
Bensulide				X ²	X1	X ²		
Clopyralid			X ⁷			x ⁷	X ⁷	
Dicamba*	Possible ¹³		X1	X ²	X ²	X1	X1	
Diquat Dibromide			X ¹²		X ¹¹	X		
Dithiopyr					X1	X		
Fluazipop-p-butyl			X1		X1		X1	
Glyphosate*	X ¹²	×	X1		X ⁸	X	×2	
Imazapyr	Suggestive ^{7,8}				x ²	X ²		
Isoxaben	X				X ²		Possible ²¹	
МСРА	Possible	X ⁶	X ²	X ²	X ¹¹	X		
Mecoprop (MCPP)*	Possible ³	X	X ²	X	x ⁹	X	X1	
Oxadiazon	X ³	×	x ¹	Possible ²²	x ¹		x ¹	
Oxyfluorfen		-	v ¹¹		x ¹¹	× ¹¹	x ¹¹	
Pendimethalin*	Possible ³	<u> </u>	x ¹		2	x ²	7	
Prodiamine		Suggestive ¹	Possible ¹⁶	× ¹			Possible ¹⁶	
Sulfentrazone	-		X13	Possible ¹³		×13	X ¹³	
Teleformer			x ⁷		x°	X ¹	x ⁷	
Trifluralin Insecticides	Possible ³	X	× ×	a a a a a a a a a a a a a a a a a a a	x ²	X ¹	^	
	Possible	^	^	· •	^	^		
Insecticides Abamectin/ Avermectin	81		× ¹¹	× ¹¹			X ⁹	
Acephate*	Possible ³	X ⁶	x ¹¹	x ²		X ²	<u>~</u>	
Bifenthrin*†			×	X X ⁸		X X ¹	X ⁹	
Carbaryl	Possible ³	Suspected ^{6,10}		x ⁻	X ¹¹	X ¹¹	x ⁻	
	X		X ⁸	X ²	X ^{**}	X ¹¹	X	
Cyfluthrin [†]		Possible ¹⁷	<u>^-</u>		<u>*</u>			
Deltamethrin [†]	Describes 2	x ¹⁰		×.		× ²		
Fipronil	Possible ³	X ⁶	X ⁸	X ⁸	X ⁸	X ⁸		
Imidacloprid #		×	X ²	Possible*	X ²		X ⁷	
Malathion*	Probable ¹²	X ¹⁰	X ¹¹	X	X ²	X ²	X ²	
Permethrin*†	X ³	Suspected ^{6,30}	X ^{1,7}	X ^{7,9}	х ⁹	X ¹		
Trichlorfon	X	× ⁶	X ¹¹	X ²	X ²	x ¹¹	x ²	

•••

Water Scarcity in Michigan?

Pressure	Western U.S.	Ottawa County		
Alarming Aquifer Drawdown	Х	X		
Rapidly Growing Development	X	Х		
Irrigation	Х	Х		
Recharge Reduction	X	X		

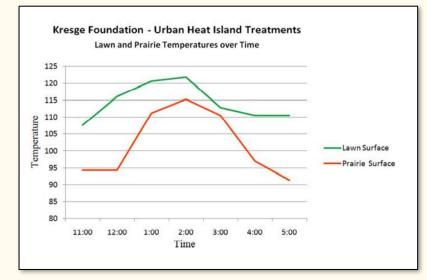
Case Studies

Southern Nevada Water Authority

- Xeriscape Conversion Study (1990)
- 73 gallons/sq ft \rightarrow 17 gallons/sq ft annually
- Set guidelines for home development

Colorado Springs Utilities

- Parks Efficiency Program (2013)
- 7.5 acres Kentucky Bluegrass \rightarrow Native Grasses
- Cut watering from 3x/week to 2x/mo
- Save 2 million gallons of water
- ROI of 4 months and \$8,108/acre annually



Michigan Case Study

Kresge Foundation Headquarters, Flint, MI (2005)

- 2.77 Acres
- Saves over 1 million gallons/year
- Saves \$6,400/year of irrigation costs
- Reduced local surface temp by ~12 $^\circ F$
- \$30,794 saved in maintenance

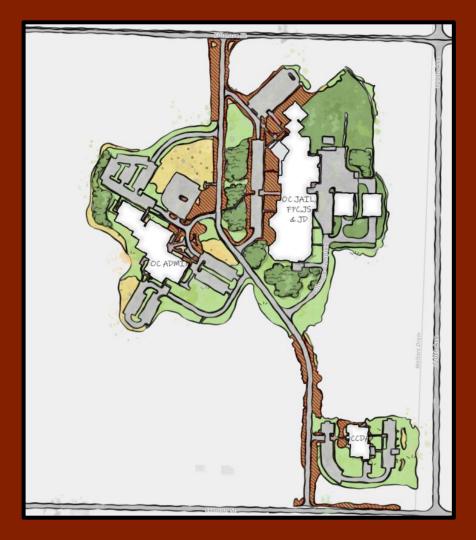
Ottawa County Re-landscaping Project

Primary Purpose

- Reduce water consumption
- Lead by example
- Encourage countywide participation

Other Benefits

- Save time and money
- Benefits to public health
- Increase wildlife habitat



Proposed County Site Locations

Fillmore Complex

~4.5 Acres of turf

Family Justice Center

~2.2 Acres of turf


Fillmore Complex w/ Future Justice Center

~6.7Acres of turf total

Hudsonville Courthouse

~3.5 Acres of turf total

James St. Complex

~7.8 Acres of turf total

* Types of Water Conscious Landscapes

Bioswale Credit: Lower Grand River Organization of Watersheds

Native Plant Garden Credit: Michigan United Conservation Club

Xeriscape Credit: Trenton Michigan Garden Walk

Native Prairie Credit: Native Connections

Rain Garden Credit: City of Royal Oak, MI

Project Phases and Methods

- Professional landscaping plan and design
- Installation process
- Short term maintenance
- Long term maintenance

Understanding the process

Inspiring Ideas

Overcoming stigmas

Interpretive Sign Example Credit: Mark Deamer, Central Park Gardens Interpretive Signage

Michigan Native Wildflowers

Wild Columbine Credit: Washtenaw County Conservation District

outhern Blue Flag Iris Credit: © (2011) Charles Peirce

1

Butterfly Weed Credit: Karan A. Rawlins, University of Georgia, Bugwood.org

New England Aster Credit: Ann Arbor Natural Area Preservation, MichiganRora.net

Black-eyed Susan Credit: Dave Powell, USDA Forest Service (retired), Bugwood.org

Rose Mallow Credit: Mary Anne Borge, The Natural Web

True Solomon's Seal Credit: Cheryl Magyar (2022), Rural Sprout

Foxglove Beardtongue Credit: Cam Mannino (2018), Natural Areas Notebook

Common Elderberry Credit: Janet Pesaturo (2013), One Acre Farm

American Hazelnut Credit: Albert Herring, CC by S.A. 2,0,, University of Minnesota

T

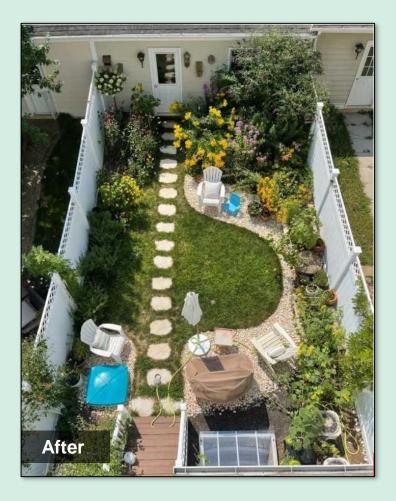
Notes</t

Oak Tree Varieties Credit: Michigan Arbor Day Alliance (2018)

Eastern Redbud Credit: Brian Gayheart (2022), Michigan State University

Little Bluestem Susan Mahr, University of Wisconsin-Madison

Credit: Evgeniya Vlasova (2021), The Spruce


Ostrich Fern Credit: Wikimedia Commons

Best of Both Worlds?

LiveRoof Global @LiveRoof

Digging this "no mow" lawn in Holland Michigan. Planted with Liriope NoMo®, this miniature selection introduced by Hortech / Grown Earth Friendly Plants is a stunning eco-friendly turf substitute.

...

9:38 AM · Aug 16, 2018 · Twitter Web Client

Credit: Kimberley Navabpour (2008), Sunset

Help Us Reimagine the Traditional Lawn!

Department of Strategic Impact

A LAN

Thank You! Q & A

Sources

Southern Lower Peninsula - Native Plants and Ecosystem Services (msu.edu)

US Outdoor Water Use | WaterSense | US EPA

Looking for Lawns (nasa.gov)

Lawn Maintenance and Climate Change — PSCI (princeton.edu)

The American Obsession with Lawns - Scientific American Blog Network

Outgrowing the Traditional Grass Lawn - Scientific American Blog Network

Water in the West | Climate Central

US states face water crisis as global heating increases strain on supplies | Access to water | The Guardian

Case Study: Saving Water with Landscape Conversion - City Parks (csu.org)

Focus-on-Agriculture.pdf

Grass Lawns are an Ecological Catastrophe – ONE Only Natural Energy

Fastest growing states: Idaho, Utah, Montana, Arizona top new growth list - Deseret News

US EPA - Pesticides Industry Sales and Usage 2008 - 2012

Landscape Transformation Case Studies (epa.gov)

Converting Lawns Into Diverse Landscapes: Case Studies | University of Maryland Extension (umd.edu)

Lawns are a soul-crushing timesuck and most of us would be better off without them – Chicago Tribune

Polyculture: Get an Earth-friendly Lawn | Cocoa, FL - Official Website (cocoafl.org)

spring (epa.gov)

Grown Earth Friendly (hortech.com)

LAF Landscape Performance Series -

Clean Cities Guide to Alternative Fuel Commercial Lawn Equipment (Brochure), Energy Efficiency & Renewable Energy (EERE)

Cleaner Air: Mowing Emissions and Clean Air Alternatives. A Fact Sheet (peoplepoweredmachines.com)

